A Few Pointers on Biotics Audit Tracking Triggers
Or

How to add triggers to your own database
By Carol Fogelsong

Last revised: 05/08/2006

Introduction
Audit tracking by the Biotics 4 application is done with the liberal use of database triggers. A trigger is a database object consisting of PL/SQL code attached to a table that will be executed when certain actions are taken on that table. When a row in that table is inserted, updated, or deleted, a database trigger will “fire” causing the audit log records to be updated with the particulars of the transaction. Most of the business tables in the Biotics database have a set of triggers: one to be executed before an update, one for execution after an update, one for execution when a row is deleted, and one for when a row is inserted. Domain tables do not have any triggers since it was not felt necessary to track changes to domain values. Extensible tables also do not have any triggers since they vary from installation to installation. Several member programs have expressed a desire to add audit tracking triggers to some of their extensible tables, and at least one (British Columbia, I believe) has actually done it. This paper is intended to help you understand the workings of the triggers so that you can do this too, if you desire. Please keep in mind that any triggers you add to your database are considered extensions of the database and can not be supported by the Biotics Support Team. But generally, triggers are not terribly complicated. Setting them up is a little time-consuming, but can be done by anyone with update privileges on the Oracle database and a good knowledge of SQL and PL/SQL.
Also, please be aware that when you add audit tracking triggers, you will increase the size of your audit log tables. Please make sure that you have enough space allocated in your database for the audit logs and the deleted schema in order to accommodate this.
Existing Biotics triggers
All of the triggers on the business tables in the Biotics database follow the same general format. For the purposes of this paper, the triggers on the SHAPE table will be used as an example.
Since the triggers are actual database objects themselves, they must have unique names. The naming convention used in the Biotics database is as follows:

TR_<name of table>_<type of trigger>

Types of triggers:

AU: After Update. This trigger will fire after a row in this table is updated

BU: Before Update. This trigger will fire before a row in this table is updated

D: Delete. This trigger will fire when a row in this table is deleted.

I: Insert. This trigger will fire when a row in this table is inserted.
So the triggers on the SHAPE table are as follows:

TR_SHAPE_AU

TR_SHAPE_BU

TR_SHAPE_D

TR_SHAPE_I

Create your own triggers
At this point, you should open your favorite third party database tool (Toad, Tora, DBVisulizer, etc.) in order to view the triggers themselves. Browse through the triggers and look at the PL/SQL code. You will notice that the structure of the triggers for each type, are identical except for the names of the tables and columns. You can use the structure of each type of trigger as a template for the new ones you want to create. Just copy and paste the PL/SQL code into Notepad and then change the names of the tables and columns to the new table name and column names. Be sure to look carefully throughout the code to catch every instance. Save the file with the name of the new trigger. You do not have to use the Biotics naming convention, but you are strongly encouraged to do so. For instance, if you are putting triggers on a table called MY_TABLE, your triggers should be named:

TR_MY_TABLE_AU

TR_MY_TALBE_BU

TR_MY_TABLE_D

TR_MY_TABLE_I

It is not possible for this paper to go into much more detail on what needs to be changed in the trigger and how each line works. Suffice it to say, if you know a little bit of PL/SQL, you’ll be able to see how it works and what needs to be changed. If you are using a tool such as Toad, which highlights the names of the tables in red, you’ll have an even easier time of it.

Add triggers to the database

Once you have the triggers coded, you can add them to your database. For the delete trigger, you will need to create a table in your deleted schema. The tables in the deleted schema are identical to the tables in the regular schema with two exceptions: the name of the table in the deleted schema is suffixed with _DEL, and the deleted schema tables contain two extra columns. These columns are:

Deleted_by

VARCHAR2(30)

Deletion_date

DATE

To create the table in the deleted schema, you will need to perform an Oracle CREATE TABLE transaction while logged onto your deleted schema. Here’s an example:

CREATE TABLE my_table_del (

My_table_id

NUMBER NOT NULL,

My_table_text_field
VARCHAR2(4000) NULL,

My_table_foreign_id
NUMBER NOT NULL,

Deleted_by

VARCHAR2(30),

Deletion_date

DATE

)

TABLESPACE bioticsdel_data;

Make sure the names you use for your table match the name referenced in the _D trigger. You will also need to grant select and update access to these tables for your regular user. While still logged on as the deleted schema user and in SQL+, enter:
GRANT SELECT, UPDATE, INSERT ON my_table_del TO biotics_user;

To add the triggers to the database, you will need to log onto your regular schema. Run the scripts that you updated in order to create the triggers. Here’s an example:

@ C:\TEMP\TRIGGERS\TR_MY_TABLE_AU.SQL

You can put all your trigger scripts in one file and run that, or you can have them in individual files and run each one separately. After you run the script(s), you should get back the response “Trigger created” telling you that the triggers were compiled and added to your database. If you get any compilation errors, you will need to find out which statement is in error. You can do this by entering “SHOW ERRORS” immediately after running the script. You’ll get back the line numbers and error messages of the lines that caused the problem. Bear in mind that the first error message is usually the most important. If you fix that error, you may find that the other errors disappear as well, since they may have cascaded from the original error.
Once the triggers have been successfully added to your database, they will be enabled and will begin “firing.” You should test them to make sure that they work as expected. If you change the structure of your extensible tables, you will need to check the triggers and see if they also require changing. For example, if you add a column to an extensible table that has triggers on it, you will need to update the _D and _AU triggers accordingly to be able to handle the new column.
